617. The Crystal and Molecular Structure of Tetrameric Phosphonitrilic Dimethylamide (Octakisdimethylaminocyclotetraphosphazatetraene).

By G. J. Bullen.

Crystals of tetrameric phosphonitrilic dimethylamide, $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$, are tetragonal, $a=13 \cdot 00, c=8.59 \AA$, space group $I \overline{4}$ with two molecules in the unit cell, molecular symmetry $\overline{\mathbf{4}}\left(S_{4}\right)$. The atomic positions have been determined by Fourier and least-squares refinement of X-ray diffraction data. The molecule has a puckered eight-membered ring of alternate phosphorus and nitrogen atoms, $\mathrm{P}-\mathrm{N}$ bond length $1 \cdot 58 \AA$. The exocyclic $\mathrm{P}-\mathrm{N}$ bonds are 1.67 and $1 \cdot 69 \AA$ long, considerably shorter than the accepted $\mathrm{P}-\mathrm{N}$ single-bond length ($1.77 \AA$). It is suggested that this shortening is due to (i) the phosphorus atom's being in the $s p^{3}$-hybrid state and forming $p \pi-d \pi$ bonds with the cyclic nitrogen, and (ii) a tendency of the exocyclic $\mathrm{P}-\mathrm{N}$ bond to double-bond character as a result of donation of electrons from the lone pair of the exocyclic nitrogen. The more important valency angles are: $\mathrm{N}-\mathrm{P}-\mathrm{N}$ (cyclic) $120^{\circ}, \mathrm{P}-\mathrm{N}-\mathrm{P}$ (cyclic) $133^{\circ}, \mathrm{N}-\mathrm{P}-\mathrm{N}$ (exocyclic) 104°.

Although the phosphonitrilic halides have been known for many years there has until recently been comparatively little interest in them and their derivatives, and very few of their crystal structures have been examined. Craig's proposal ${ }^{1}$ that these compounds are aromatic in character and that aromaticity is not, as with carbon systems, confined to six-membered rings, has created a need for knowledge of their precise stereochemistry. Until two years ago the only detailed crystal structure determination of a phosphonitrilic compound was that of $\left(\mathrm{PNCl}_{2}\right)_{4}$ by Ketelaar and de Vries. ${ }^{2}$ This has recently been refined by Hazekamp et al. ${ }^{3}$ and in addition there are X-ray diffraction studies of $\left(\mathrm{PNCl}_{2}\right)_{3}$ (Wilson

[^0]and Carroll ${ }^{4}$), $\left(\mathrm{PNF}_{2}\right)_{4}\left(\mathrm{McGeachin}^{2}\right.$ and Tromans ${ }^{5}$), $\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$ (Dougill ${ }^{6}$), and the present work on $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ (the preliminary results of which have already been published ${ }^{7}$). Of the four tetrameric derivatives examined, $\left(\mathrm{PNF}_{2}\right)_{4}$ has a planar ring, while the other three have puckered rings with very similar bond lengths and angles.

Experimental

The preparation of the amide $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ has been described by Ray and Shaw. ${ }^{8}$ Crystals suitable for X-ray examination were grown from a solution in toluene. They are colourless tetragonal needles, the forms developed being the tetragonal prism \{110\} and tetragonal bisphenoid \{101\}. Two crystals were used to provide equi-inclination Weissenberg photographs ($\mathrm{Cu}-\mathrm{K}$ radiation, multiple-film technique, room temperature) for measurement of unitcell dimensions and intensities: (i) a needle which had been reduced to a cylinder (axis parallel to c) of diameter 0.1 mm . by rotating it against a strip of filter paper wetted with toluene, for ($h k 0$), ($h k 2$), and ($h k 3$) layers, and (ii) a roughly equidimensional prism cut from a needle of diameter 0.1 mm ., for $(0 k l),(1 k l)$, and ($2 k l$) layers. It was considered that, with these crystals, absorption errors would be inappreciable. Intensities were estimated visually and corrected for variation in reflexion spot-shape on upper layer lines as proposed by Phillips. ${ }^{9}$ From a total of 754 independent reflexions with the limiting sphere, the intensities of 556 were measured, and of these only 21 were too weak to be observed.

The three-dimensional refinement was carried out on the University of London Mercury computer by the method of least squares. The atomic scattering factors used were: phosphorus from tables, ${ }^{10}$ nitrogen that of Freeman, ${ }^{11}$ and carbon and hydrogen those of McWeeny. ${ }^{12}$ Details of the computer programmes used for the refinement and for calculation of Fourier synthesis, molecular dimensions, and analysis of thermal motion have been given by Mills and Rollet. ${ }^{13}$

The diamagnetic anisotropy was measured by the critical torsion method. ${ }^{14}$ A crystal large enough for this purpose was grown by stirring 1-2 c.c. of a saturated solution in toluene in which had been placed a number of small crystal fragments and one larger well-shaped crystal. The large crystal grew, at the expense of the fragments, to a length of 3 mm . Crystals grown in this agitated solution had a more perfect development of external faces than those grown in a stationary solution. The anisotropy was found to be $\chi_{\|}-\chi_{\perp}=-5 \times 10^{-6}$ c.g.s.e.m.u., so that the crystal is magnetically negative. With a crystal of the size used and this low anisotropy, the critical torsion angle is small so that the result is only approximate.

The melting point of $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ has been given ${ }^{8}$ as 237° but the melting is accompanied by decomposition from about 220° and takes place over a range of temperature. There is, however, a transition point, which has not hitherto been reported, at 112°. At this temperature the substance passes from the tetragonal phase described in this paper into an isotropic phase. This change, which can be observed under the microscope (from loss of polarization colours), occurs quite sharply without decomposition and is reversible; it is therefore a better criterion for identification than the melting point with decomposition.

Crystal Data. $-\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}, M=532 \cdot 6$, tetragonal bisphenoidal, $a=b=13 \cdot 00 \pm 0.01$, $c=8.59 \pm 0.01 \AA, U=1452 \AA^{3}, D_{m}=1.219 \mathrm{~g} . \mathrm{cm} .^{-3}$ (by flotation), $Z=2, D_{c}=1.218 \mathrm{~g}$. $\mathrm{cm} .^{-3}, F(000)=576, \mu=25 \cdot 5 \mathrm{~cm} .^{-1}$ for Cu radiation. Space group $I \overline{4}\left(S_{4}{ }^{2}, N o .82\right)$, systematic absences of X-ray reflexions: ($h k l$) absent when $h+k+l$ is odd, Laue symmetry $4 / m$,

4 Wilson and Carroll, $J ., 1960,2548$.
5 McGeachin and Tromans, J., 1961, 4777.
${ }^{6}$ Dougill, J., 1961, 5471.
₹ Bullen, Proc. Chem. Soc., 1960, 425.
${ }^{8}$ Ray and Shaw, Chem. and Ind., 1959, 53.
${ }^{9}$ Phillips, Acta Cryst., 1954, ry, 746; 1956, 9, 819.
10 " Internationale Tabellen zur Bestimmung von Kristallstrukturen," Vol. II, Borntraeger, Berlin, 1935, p. 571.
${ }_{11}$ Freeman, Acta Cryst., 1959, 12, 261.
12 McWeeny, Acta Cryst., 1951, 4, 513.
${ }^{13}$ (a) Cruickshank, Pilling, Bujosa, Lovell, and Truter, in "Computing Methods and the Phase Problem in X-Ray Crystal Analysis," Pergamon Press, London, 1961, p. 47; (b) Mills and Rollett, ibid., pp. 122, 123.

14 Krishnan and Banerjee, Phil. Trans., 1934, 234A, 265.
molecular symmetry $\overline{4}$, optically uniaxial negative, refractive indices for sodium light $\varepsilon=1.550$, $\omega=1.570$.

Structure Determination

Since there are only two molecules in the body-centred unit cell, the molecules must occupy special positions on four-fold axes at ($0,0,0$) and ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$). The projection of the structure on (001) was examined first because its symmetry is independent of whether the space group is $I 4, I \overline{4}$, or $I 4 / m$, all of which are consistent with the systematic absences and Laue symmetry. The x - and y-co-ordinates of the phosphorus atoms were found from the (001) Patterson projection (Fig. 1), peak A being assigned to the vector between an atom at (x, y) and the related atom at (\bar{y}, x) and peak B to the vector between those at (x, y) and (\bar{x}, \bar{y}). It later became evident that

Fig. 1. Projection of the Patterson function on (001). Contour interval arbitrary; for clarity, the lower contours, and also those in the origin peak, are omitted.
one carbon atom overlaps with the phosphorus in this projection, so that the P-P vectors are enhanced and their identification facilitated. From the co-ordinates of the phosphorus atom structure factors were calculated and their signs used to give a Fourier projection on (001) from which it was possible to locate the nitrogen and the carbon atoms. The projection was partially refined by Fourier and difference Fourier syntheses; during refinement it became clear that $\mathrm{C}(3)$, which had been placed incorrectly, must have almost the same x - and y-co-ordinates as the phosphorus atom. All other atoms are resolved in this projection (Fig. 2).

From the appearance of the molecule in projection on (001) the following deductions were made regarding the molecular symmetry, leading to selection of $I \overline{4}$ as the correct space group, in agreement with the morphology. The eight $\mathrm{P}-\mathrm{N}$ bonds in the ring are in two crystallographically non-equivalent sets of four with apparent lengths, in projection, of 1.6 and $1.35 \AA$. Space group $I 4 / m$ is rejected because it would require a planar $\mathrm{P}-\mathrm{N}$ ring with these widely different lengths as the actual $\mathrm{P}-\mathrm{N}$ bond lengths, and $1.35 \AA$ is too short. Also, a planar $\mathrm{P}-\mathrm{N}$ ring would result in a 002 reflexion much stronger than is observed. In $I 4$ the four phosphorus atoms in the molecule would still be coplanar with their plane parallel to (001), but the four nitrogen atoms could lie in a different but parallel plane. The two $\mathrm{P}-\mathrm{N}$ distances, however,
would still be very different unless the two planes were very far apart, which is absurd; the length $1.35 \AA$ could not be increased to a more reasonable value without making the other much greater than $1 \cdot 6 \AA$. Hence $I 4$ is rejected, leaving $I \overline{4}$ and molecular symmetry $\overline{4}$ as the

Fig. 2. Electron-density projection on (001). Contour interval $2 \mathrm{e} \AA^{-2}$ with the zero contour broken, except at phosphorus atoms where the contours are at $2,5,10$, $15,20,25,30 \mathrm{e}^{\AA^{-2}}$.
only possibility. With this symmetry, by placing alternate phosphorus and nitrogen atoms of the ring above and below the (001) plane, one can have $\mathrm{P}-\mathrm{N}$ bonds in the ring of more similar actual lengths but with the observed projected lengths.

By using x - and y-co-ordinates derived from refinement of the (001) projection and assigning
trial z co-ordinates to all atoms by taking likely values for bond lengths, (0 kl) structure factors were calculated. Good agreement with the observed values being obtained, the non-centrosymmetric ($0 k l$) projection (Fig. 3) was refined, partly by Fourier methods and partly by least squares.

When the R factor for the ($k k 0$) and ($0 k l$) intensities had fallen below $0 \cdot 2$, three-dimensional data were incorporated in the least-squares refinement. Using structure factors calculated with individual isotropic temperature factors for each atom and neglecting hydrogen atoms

Obocon

Fig. 3. Electron-density projection on (100). Contour interval $2 \mathrm{e}^{-2}$ with the lowest contour at $2 \mathrm{e} \AA^{-2}$. At the phosphorus atoms contours above $10 \mathrm{e}^{-2}$ are at intervals of $5 \mathrm{e} \AA^{-2}$.
enabled a three-dimensional difference Fourier synthesis to be performed. From it the positions of the hydrogen atoms in the methyl groups were found and suggestions for anisotropy of thermal motion were obtained. In assigning trial anisotropic temperature factors attempts were made to relate the anisotropy to the local molecular geometry, e.g., for the exocyclic nitrogen atoms to place the maximum vibration direction as nearly as possible perpendicular to the three bonds formed by each such atom, provided this agreed with the difference Fourier. The introduction of hydrogen atoms and anisotropic temperature factors caused the R factors for the various layer lines (which were at this stage being refined separately) at first to rise slightly but in subsequent cycles R fell rapidly. For the final stages all the data were refined together.

Results.-The final atomic co-ordinates are given in Table 1. The co-ordinates adopted for hydrogen atoms (Table 2) are mostly those taken from the three-dimensional difference synthesis but some were adjusted slightly during refinement. They are not to be considered

Table 1.
Final atomic co-ordinates (expressed as fractions of unit-cell edges) and their standard deviations (in \AA).

	x	y	z	$\sigma(x)(\AA)$	$\sigma(y)(\AA)$	$\sigma(z)(\AA)$
$\mathrm{P}, \ldots \ldots \ldots \ldots \ldots \ldots$.	+0.05005	+0.1480	+0.0208	0.0024	0.0024	0.0030
$\mathrm{~N}(1) \ldots \ldots \ldots \ldots \ldots \ldots$	+0.1254	+0.0567	+0.0603	0.009	0.009	0.010
$\mathrm{~N}(2) \ldots \ldots \ldots \ldots \ldots$.	+0.0394	+0.2107	+0.1919	0.010	0.009	0.012
$\mathrm{~N}(3) \ldots \ldots \ldots \ldots \ldots$.	+0.1047	+0.2343	-0.0972	0.009	0.009	0.010
$\mathrm{C}(1) \ldots \ldots \ldots \ldots \ldots$	-0.0169	+0.3075	+0.1845	0.012	0.012	0.015
$\mathrm{C}(2) \ldots \ldots \ldots \ldots \ldots \ldots$	+0.0543	+0.2865	-0.2203	0.012	0.013	0.016
$\mathrm{C}(3) \ldots \ldots \ldots \ldots \ldots \ldots$	+0.0258	+0.1511	+0.3324	0.013	0.012	0.012
$\mathrm{C}(4) \ldots \ldots \ldots \ldots \ldots \ldots$	+0.2051	+0.2774	-0.0496	0.012	0.013	0.015

Table 2.
Fractional co-ordinates of hydrogen atoms used for structure-factor calculations.

		x	y	z		x	y	z		x	y	z
$\mathrm{H}(1)$	$\ldots+0.02$	+0.33	+0.09	$\mathrm{H}(5)$	$\ldots+0.12$	+0.31	-0.31	$\mathrm{H}(9)$	$\ldots++0.03$	+0.20	+0.43	
$\mathrm{H}(2)$	\ldots	-0.09	+0.29	+0.22	$\mathrm{H}(6)$	$\ldots+0.03$	+0.37	-0.22	$\mathrm{H}(10)$	$\ldots+0.22$	+0.36	-0.08
$\mathrm{H}(3)$	$\ldots+0.03$	+0.36	+0.27	$\mathrm{H}(7)$	\ldots	-0.05	+0.13	+0.31	$\mathrm{H}(11)$	$\ldots+0.26$	+0.22	-0.06
$\mathrm{H}(4)$	$\ldots-0.01$	+0.26	-0.30	$\mathrm{H}(8)$	$\ldots+0.08$	+0.08	+0.34	$\mathrm{H}(12)$	$\ldots+0.18$	+0.30	+0.07	

Table 3.
Components $U_{i j}$ of thermal vibration tensors and their standard deviations (in $10^{-4} \AA^{2}$).

	U_{11}	σ	U_{22}	σ	U_{33}	σ	U_{23}	σ	U_{13}	σ	U	σ
P	306	7	277	7	438	8	-13	10	-3	10	-2	7
N(1) ...	458	35	512	36	575	44	0	41	7	36	-92	32
N(2) ...	573	38	482	32	588	45	-14	41	-74	45	21	31
N(3) ...	422	33	419	33	587	40	63	37	-84	37	-48	30
$\mathrm{C}(1) \ldots$	491	45	530	43	751	57	-182	57	0	55	20	39
$\mathrm{C}(2)$.	606	50	629	52	777	73	235	60	-108	63	-202	44
C(3)	731	54	476	43	492	42	-44	49	14	58	-21	45
C(4)	508	44	569	48	738	68	-16	54	-5	54	-78	41

Table 4.
Amplitudes of thermal vibration (in \AA) along the principal axes of the vibration ellipsoids. The direction of each principal axis is specified by the angles which it makes with the crystallographic axes.

	A	a	b	c		Å	a	b	c
	0.209	89°	86°	175°	C(1)	$0 \cdot 292$	92°	119°	30°
	$0 \cdot 175$	4	94	89		0.222	14	78	82
	$0 \cdot 166$	86	6	85		0.206	104	32	62
	$0 \cdot 241$	57	135	63	C(2)	$0 \cdot 324$	64	126	133
$\mathrm{N}(1) \ldots .$.	$0 \cdot 239$	75	113	153		$0 \cdot 240$	45	104	49
	0.197	37	53	92		$0 \cdot 197$	56	40	108
$\mathrm{N}(2) \ldots . .$.	0.257	48	82	137	C(3)	$0 \cdot 271$	7	95	86
	0.225	46	77	47		$0 \cdot 229$	97	129	40
	0.218	105	15	93		$0 \cdot 210$	91	140	130
$\mathrm{N}(3) \ldots \ldots\{$	0.255	67	109	150	C(4)	$0 \cdot 272$	91	85	174
	0.202	119	44	119		$0 \cdot 249$	56	145	95
	$0 \cdot 193$	39	52	83		$0 \cdot 213$	35	56	87

as having been determined accurately; the $\mathrm{C}-\mathrm{H}$ bond lengths calculated from them range from 1.0 to $1.2 \AA$. The anisotropic thermal parameters, together with standard deviations, are in Table 3. These $U_{i j}$ values were used to calculate the orientation and magnitude of the principal axes of the vibration ellipsoid for each atom (Table 4). For hydrogen atoms an isotropic temperature factor $\exp \left(-5 \sin ^{2} \theta / \lambda^{2}\right)$ equivalent to $\left(\overline{u^{2}}\right)^{\frac{1}{2}}=0.25 \AA$ was used; it was not refined.

The observed and final calculated structure factors are in Table 5 . The final R for all observed reflexions, except 110,220 , and 620 , is 0.084 . The 21 reflexions, which were too weak

Table 5.
Observed and calculated structure factors ($\times 5$).

Table 5. (Continued.)

	$\mid F$,	${ }_{\text {\| }} \mathrm{F}_{\mathrm{c}} \mid$	α_{c}	l	$\left\|F_{0}\right\|$	$\left\|F_{\mathrm{c}}\right\|$ 616	α	l	$\left\|F_{\text {o }}\right\|$	${ }_{76 l} \mathrm{~F}_{\mathrm{c}} \mid$	α_{c}	l	$\left\|F_{\text {o }}\right\|$	$\begin{gathered} \left\|F_{\mathrm{c}}\right\| \\ 8.13 . l \end{gathered}$	α_{c}	l	$\mid F$ 。		α_{c}
	165	166	350°	1	220	226	239°	3	68	67	55°	3	57	66	189°	0	104	99	180°
				3	108	104	239									2	69	79	238
		12.1		5	96	95	214			771				8.14.l					
	139	112	0	7	80	92 40	272	0	194	179	180	0	110	104	180			.7.l	
	169	176	355	9	43	40		2	154	172	156	2	64	82	183	3	93	86	240
		13.l		0	131	${ }^{62 l} 79$				81				911				.8.l	
	80	85	5	2	136	79 130	275	3	142	154	173	0	112	114	180	0	32	29	${ }_{0}^{0}$
				4	95	84	197					2	62	62	196	2	44	47	296
		14.1		6	117	138	232			99		4	104	113	166			9.	
	<18	2	0	8	31	31	216	0	95	92	180	8	75	86	216		80	77	6
	<13	19	351	10	27	34	263	2	92	103	191	8	31	27	233	3	80	77	6
						$63 l$				$10 . l$				$92 l$				10.1	
		$15 . l$		3	114	105	114	3	28		170	1	34	52	302	0	116	98	0
	36	41	269					3	28		170	3	95	105	101	2	119		6
						641				11.6		5	25	28	47			11.1	
		16.1		0	264	242	0		64	58	180	7	29	26	285			11.1	
	39	41	180	2	166	182	71	2	<15	$\begin{array}{r}88 \\ \hline\end{array}$	181	9			206	3	85	88	359
	16	25	215			651								931				$12 . l$	
		511		3	183	178	79	3	26	12.l	100	0	169	149	0	0	72	61	0
	312	330	180									2	118	138	13	2	31		346
	65	57	170			661				$13 . l$									
	191	182	175	2	85 91	69 97	0 224	0						941				.1.]	
	117	110	209	2	91	97		0	60	66	184	3	156	166	330	0	227	229	180
10	37 <13	36 9	230 233			675		2	60			3	156	166	330	2	141 36	155 39	167
				3	159	170	163			$14 . l$				$95 l$		6	54	53	138
		21						3	52	64	191	0	126	112	0	8	18	25	86
1	250	230	244			681						2	154	173	305				
3	230	220	170	0	265	257	180			15.2								2.l	
5	209	215	179	2	205	239	175	0	72	70	180			$96 l$		1	91	102	165
7	78	91	206					2	14	35	176	3	72	75	317	3	65	63	157
9	36	29	157			691						3	72	75	317	5	38	44	71
				3	146	177	176			$1 l$						7	42	49	81
		31						1	44	47	337			972					
	54	28	0			.10.l		3	93	93	310	0	57	47	180			3.1	
2	107	119	169	0	19	5		5	93	100	209	2	25	29	201	0	<17	23	180
				2	65	81	224	7	57	62	253					2	25	18	122
		$4 l$						9	54	54	260			$98 l$					
	101	101	143			.11.l						3	81	72	269			$4 . l$	
			143	3	20	18	5			$2 l$						3	56	50	166
								0	22	33	0			991					
		$5 l$				12.		2	125	121	5	0	84	67	0			$5 . l$	
	126	105	180			.12.l		4	114	126	322	2	49	44	343	0	93	70	180
2	76	71	132	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 45 \\ & 18 \end{aligned}$	40 19	0 28	6 8	$\begin{aligned} & 44 \\ & 34 \end{aligned}$	$\begin{aligned} & 55 \\ & 37 \end{aligned}$	256 302					2	76	70	185
		61												.10.l					
	109	112	98			13.l				$3 l$		3	85	74	7			6.1	
	109		98	3	16	21	137	3	187	202	340			.11.l		3	83	77	178
		71										0	103	83	0			7.1	
0	93	78	180			14.l				426		2	77	76	20	0	81	63	180
2	81	78	172	0 2	<16		180 220	0	256 209	236 218	0 4					2	71	63	179
				2	31	27	220	2		218	4			.12.l				63	
		$8 l$										3	<14	19	42			8.l	
3	131	133	187	3	19		225		227	256						3	40	34	179
				3	19		225	3	227		341			13.l					
		91				712				62		0	17	15	180			9.l	
0	153	157	180									2	43	54	179	0	53	48	0
2	103	121	166	2	87	86	299	0		24 51	3					2	68	77	1
				4	145	171	268							0.1.l					
		10.l		6	60	63	259			71		1	176	187	189			0.1	
3	44	41	224	8	52	57	272			49	233	3	195	223	168	3	92	95	10
				10	34	59	262	3	50	49	233	5	36	37	169				
		1.1										7	33	32	175			1. 5	
0	144	109	0			221										0	79	66	0
2	146	153	356	1	195	180	302	0	98 8	$\stackrel{99}{77}$	${ }_{156}^{180}$.2.l		2	59	63	353
				3	165	163	309			77		0	100	103	180				
		2.1		5	89	83	279					2	104	108	169			$1 . l$	
3	113	116	15	7	75	95	262			31		4		104	98 161	1	54	59	176
				9	42	47	270	3	35	31	223	8	<22	${ }_{24}$	161	3	26	25	101
		3.1														5	15	10	64
		.l				31				0.l						7	19	21	17
0	73	70	0	0	236	208	0	0	<17	8	0			.3.l					
2	44	47	19	2	149	151	41	2	43	44	53	3	52	47	122				
																0	37	25	180
		4.l				74				1.1				.4.l		2	49	44	34
2	48	49	289	3	172	187	9	3	61	60	32	0	183	161	0	4	28	37	35
												2	69	78	333	6	54	54	72
		5.1				51				2.1									
0	58	48	180	0	300	277	0	0	<18	16	180			0.5.l					
2	40	45	286	2	163	180	0	2	14	21	183	3	<16	20	86	3	20	20	338

to be observed, were not included in the calculation of R but agreement for them is good (see Table 5), only 6 having $\left|F_{\mathrm{c}}\right|$ greater than the minimum observable $\left|F_{\mathrm{o}}\right|$.

The large discrepancies between observed and calculated structure factors for the very intense 110 and 220 reflexions were attributed to extinction. For $620,\left|F_{\mathrm{c}}\right|$ was considerably less than $\left|F_{0}\right|$ throughout the analysis, the final discrepancy being twice as large as that for any of the other reflexions. The cause of this is thought to be a Renninger double-reflexion effect, ${ }^{15}$ which can usually be verified by comparing the intensities of the reflexion in question when it is recorded on two or more photographs taken with different zone axes as the rotation axis. However, in the present case the measured intensity of 620 was considerably larger than the calculated value for both the $h k 0$ zero-layer and $2 k l$ second-layer equi-inclination photographs. For the former, the double reflexion is from planes $\overline{1} 10$ and 730 , of which $\overline{1} 10$ has the largest intensity in this layer. For the $2 k l$ photograph (on which the reflexion $2 \overline{6} 0$, related by symmetry to 620 , is recorded) the double reflexion occurs from $4 \overline{4} 0$ and $\overline{2} \overline{2} 0$ (to produce $2 \overline{6} 0$). $\overline{2} \overline{2} 0$ is a very intense reflexion. The reflexions 110,220 , and 620 were excluded from the final stages of the refinement.

Standard deviations of co-ordinates calculated from equations of the form (Cruickshank et al. ${ }^{13}$)

$$
\sigma^{2}(x)=\left[\sum_{q}\left(\Delta F_{q}\right)^{2}\right] /[m-n]\left[\sum_{q}\left(\partial\left|F_{q}\right| / \partial x\right)^{2}\right]
$$

are given in Table 1. A root-mean-square of $\sigma(x), \sigma(y)$, and $\sigma(z)$ was taken as the standard deviation $\sigma(r)$ of each atomic position. Bond lengths and angles are shown in Table 6 together with their standard deviations calculated from formulæ given by Jeffrey and Cruickshank. ${ }^{16}$

Discussion

In the crystal structure of $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$, the molecule has a puckered eight-membered phosphorus-nitrogen ring of symmetry $\overline{4}$ with two sets of crystallographically non-equivalent $\mathrm{P}-\mathrm{N}$ bonds which are found to be equal in length within experimental error (Table 6). This confirms that there is electron delocalization in the ring as proposed, from different points of view, by Craig ${ }^{1}$ and by Dewar et al., ${ }^{17}$ but it does not enable us to choose between

[^1]Table 6.
Bond lengths (\AA) and bond angles with standard deviations (in brackets).

$\mathrm{P}-\mathrm{N}(1)$	1.576°	$\left(0.01{ }^{\circ}\right)$	$\mathrm{N}(1)-\mathrm{P}-\mathrm{N}\left(1^{\prime}\right)$	$120 \cdot 1^{\circ}$	$\left(0 \cdot 5^{\circ}\right)$	$\mathrm{P}-\mathrm{N}(2)-\mathrm{C}(1)$	$114.9{ }^{\circ}$	(0.8 ${ }^{\circ}$)
$\mathrm{P}-\mathrm{N}\left(\mathbf{1}^{\prime}\right)$	1.580		$\mathrm{N}(2)-\mathrm{P}-\mathrm{N}(3)$	$103 \cdot 8$		$\mathrm{P}-\mathrm{N}(2)-\mathrm{C}(3)$	118.6	
$\mathrm{P}-\mathrm{N}(2)$	1.686		$\mathrm{N}(1)-\mathrm{P}-\mathrm{N}(2)$	103.2		$\mathrm{P}-\mathrm{N}(3)-\mathrm{C}(2)$	125.3	
$\mathrm{P}-\mathrm{N}(3)$	1.671		$\mathrm{N}(1)-\mathrm{P}-\mathrm{N}(3)$	111.8		$\mathrm{P}-\mathrm{N}(3)-\mathrm{C}(4)$	117.5	
			$\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}-\mathrm{N}(2)$	113.7				
$\mathrm{N}(2)-\mathrm{C}(1)$	1.46		$\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}-\mathrm{N}(3)$	103.4		$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	116.0	
$\mathrm{N}(2)-\mathrm{C}(3)$	$1 \cdot 45$					$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$115 \cdot 7$	(1.0)
$\mathrm{N}(3)-\mathrm{C}(2)$ $\mathrm{N}(3)-\mathrm{C}(4)$	1.42 1.48		$\mathrm{P}-\mathrm{N}\left(1^{\prime}\right)-\mathrm{P}^{\prime}$	133.0	(0•6)			

their alternative theories because both lead to equality of bond lengths in the ring. The lengths found for these $\mathrm{P}-\mathrm{N}$ bonds, although markedly different from those found by Ketelaar and de Vries ${ }^{2}$ in $\left(\mathrm{PNCl}_{2}\right)_{4}$, are similar to those obtained in the more recent structure determinations for $\left(\mathrm{PNCl}_{2}\right)_{4}$ and $\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$ (see Table 7) and for $\left(\mathrm{PNCl}_{2}\right)_{3}(1.57$ -

Table 7.
Comparison of bond lengths and bond angles in the molecules $\left(\mathrm{PNCl}_{2}\right)_{4}$ (Hazekamp et al. ${ }^{3}$), $\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$ (Dougill ${ }^{6}$), and $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ (this work).

	$\left(\mathrm{PNCl}_{2}\right)_{4}$	$\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$	$\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$
P-N cyclic (A)	1.569, 1.570	1.591, 1-601	1.576, 1.580
$\mathrm{N}-\mathrm{P}-\mathrm{N}$ cyclic	$121.2{ }^{\circ}$	$119.8{ }^{\circ}$	$120 \cdot{ }^{\circ}$
$\mathrm{P}-\mathrm{N}-\mathrm{P}$ cyclic .	$131 \cdot 3$	$132 \cdot 0$	133.0
$\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}$ exocyclic	$102 \cdot 8$		
$\mathrm{C}-\mathrm{P}-\mathrm{C}$ exocyclic		104•1	
$\mathrm{N}-\mathrm{P}-\mathrm{N}$ exocyclic			$103 \cdot 8$

$1.61 \AA) .{ }^{4} \quad$ In $\left(\mathrm{PNF}_{2}\right)_{4}$, on the other hand, the $\mathrm{P}-\mathrm{N}$ bonds are much shorter, ${ }^{5} 1 \cdot 49-1.52 \AA$. Except for $\left(\mathrm{PNF}_{2}\right)_{4}$ the tetrameric compounds so far examined have rings with symmetry $\overline{4}$ but, owing to the flexibility possible with a puckered eight-membered ring, there are minor differences in their shapes. A measure of these differences is provided by the distance of the phosphorus atoms from the mean plane of the ring [001) plane] in each case, viz., $0.35 \AA$ in $\left(\mathrm{PNCl}_{2}\right)_{4}$ but only $0.18 \AA$ in $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ and $0.21 \AA$ in $\mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$. A possible explanation for the difference in shape from the chloride is that, if the dimethyl-amino-groups were attached to a ring shaped as in $\left(\mathrm{PNCl}_{2}\right)_{4}$, there would be steric hindrance between those groups attached to phosphorus atoms at opposite sides of the ring. The flattening of the ring in $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ causes such groups to move farther apart.

In the present structure, the exocyclic bonds $\mathrm{P}-\mathrm{N}(2)$ and $\mathrm{P}-\mathrm{N}(3)$, equal in length within experimental error, clearly have a different bond order from the cyclic $\mathrm{P}-\mathrm{N}$ bonds but are shorter than one would expect for a pure single bond. This shortening may be attributed to two causes: (a) the phosphorus atom participates in the formation of π-bonds in the ring, and (b) there could be donation of electrons from the lone pair of the exocyclic nitrogen atom into the exocyclic $\mathrm{P}-\mathrm{N}$ bond, giving the latter some double-bond character. The reduction in the covalent radius of the phosphorus in this compound [effect (a)] can be compared with the reduction of the carbon covalent radius leading to a bond shorter than a normal single bond in such a group as $>\mathrm{C}-\mathrm{CH}_{3}$, where one C atom is in the $s p^{2-}$ hybrid state. The covalent radius appropriate to phosphorus in phosphonitrilic compounds can be deduced from the $\mathrm{P}-\mathrm{C}$ bond length of $1.81 \AA$ found ${ }^{6}{ }^{\text {in }} \mathrm{P}_{4} \mathrm{~N}_{4} \mathrm{Me}_{8}$ since in this compound effect (b) cannot be present. Taking the covalent radius of a methyl carbon atom as $0.77 \AA$ and including the Schomaker-Stevenson electronegativity correction, we obtain $1.07 \AA$ for the phosphonitrilic phosphorus radius as compared with $1 \cdot 10 \AA$ which is quoted as the single-bond radius. ${ }^{18}$ For the exocyclic bond in $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$, the

[^2]sum of the covalent radii of phosphorus and nitrogen and the electronegativity correction would then be $1.07+0.74-0.07=1.74 \AA$, as compared with the observed lengths of 1.67 and $1.69 \AA$. It thus appears that donation from the lone pair of electrons of the nitrogen atom of the dimethylamino-group into the $\mathrm{P}-\mathrm{N}$ bond [effect (b)] causes a further reduction in the bond length. Support for this conclusion comes from the planarity of the PNMe_{2} groupings. The three bonds at $\mathrm{N}(3)$ are very nearly coplanar, the sum of the three bond angles at this atom being 358.5°. At $\mathrm{N}(2)$ there is a small deviation from planarity, the sum of the three angles being $349 \cdot 5^{\circ}$.

In the three tetragonal structures which have been studied, the angles in the ring at the phosphorus and nitrogen atoms, and the angles, $\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}, \mathrm{C}-\mathrm{P}-\mathrm{C}$, and $\mathrm{N}(2)-\mathrm{P}-\mathrm{N}(3)$, between the exocyclic substituents at the phosphorus are remarkably alike (Table 7). Intermolecular distances in the dimethylamide structure are normal for van der Waals interaction, the shortest $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3}$ being $3 \cdot 73,3 \cdot 76 \AA$, and $\mathrm{N} \cdot \mathrm{CH}_{3} 4 \cdot 00 \AA$. Within the molecule, shortest distances between atoms in neighbouring dimethylamino-groups are $\mathrm{CH}_{3} \cdots \mathrm{CH}_{3} 3.54,3 \cdot 60,3.76 \AA$, and $\mathrm{N} \cdots \mathrm{CH}_{3} 3 \cdot 04,3 \cdot 11 \AA$; the cyclic nitrogen is particularly close to two carbon atoms in the same molecule: $\mathrm{N}(1) \cdots \mathrm{C}(3) 2.94 \AA$ and $\mathrm{N}(1) \cdots \mathrm{C}\left(2^{\prime \prime}\right) 2 \cdot 89 \AA$.

In this structure the dimethylamide molecules possess four-fold symmetry and will therefore have two equal principal molecular diamagnetic susceptibilities lying in a plane perpendicular to the $\overline{4}$ axis $\left(K_{\perp}\right)$ and a third principal molecular susceptibility parallel to this axis $\left(K_{\| \|}\right)$. Since all the molecules lie parallel to each other, K_{\perp} and $K_{\| \mid}$will be equal respectively to χ_{\perp} and $\chi_{\|}$, the principal crystal susceptibilities, and the molecular diamagnetic anisotropy ($K_{\|}-K_{\perp}$) will be equal to the crystal diamagnetic anisotropy, -5×10^{-6} c.g.s.e.m.u. This value is low in comparison with those found for benzenoid aromatic systems (the molecular anisotropy for the benzene ring is ${ }^{19}-60 \times 10^{-6}$ c.g.s.e.m.u.) where a large diamagnetic anisotropy has been considered a direct consequence of the π-electron delocalisation. A low anisotropy has been obtained ${ }^{20}$ also for $\left(\mathrm{PNCl}_{2}\right)_{3}$. The apparent contradiction of these results with the view that phosphonitrilic ring compounds have aromatic character (which is supported by measurements of heats of formation ${ }^{21}$) has been dealt with in detail by Craig et al., ${ }^{20}$ who find that for $\left(\mathrm{PNCl}_{2}\right)_{3}$ the ring-current contribution to the magnetic anisotropy is actually paramagnetic and that this can be accounted for theoretically. The situation as regards optical birefringence appears to be similar; the value, -0.02 , for $\mathrm{P}_{4} \mathrm{~N}_{4}\left(\mathrm{NMe}_{2}\right)_{8}$ is numerically much smaller than those for structures involving a parallel arrangement of benzene rings (e.g., hexamethylbenzene, $-0 \cdot 24$).

I thank Mr. I. D. Knight for preparing the compound for the investigation, Professor Dame Kathleen Lonsdale, F.R.S., for providing facilities for the magnetic measurements, Dr. Aafje Vos for allowing me to quote her results which are in the press, and Dr. J. S. Rollett, Dr. R. A. Sparks, and Mr. O. S. Mills for permitting me to use their programmes for the Mercury computer.
[Received, February 19th, 1962.]

[^3]
[^0]: ${ }^{1}$ Craig, $J ., 1959,997$.
 ${ }^{2}$ Ketelaar and de Vries, Rec. Trav. chim., 1939, 58, 1081.
 ${ }^{3}$ Hazekamp, Migchelsen, and Vos, Acta Cryst., 1962, 15, 539.

[^1]: ${ }^{15}$ Renninger, Z. Krist., 1937, 97, 107.
 16 Jeffrey and Cruickshank, Quart. Rev., 1953, 7, 335.
 17 Dewar, Lucken, and Whitehead, J., 1960, 2423.

[^2]: 18 Pauling, " Nature of the Chemical Bond," Cornell Univ. Press, Ithaca, 3rd edn., 1960, pp. 224229.

[^3]: 10 Hoarau, Lumbroso, and Pacault, Compt. rend., 1956, 242, 1702.
 ${ }^{20}$ Craig, Heffernan, Mason, and Paddock, J., 1961, 1376.
 ${ }^{21}$ Hartley, Paddock, and Searle, J., 1961, 430.

